[1] C. H. Guo, S. M. Fang, Y. He, A generalized stochastic process: fractional G-Brownian motion, Methodol. Comput. Appl. Probab., 25(1) (2023),22. (SCI)
[2] C. H. Guo, S. M. Fang, Y. He, Derivation and application of some fractional Black-Scholes equations driven by fractional G-Brownian motion, Comput. Econ., 61(4)(2023), 1681-1705. (SCI)
[3] C. H. Guo, S. M. Fang, Intuitionistic fuzzy calculus based on Einstein operations, Internat. J. Uncertain. Fuzziness Knowledge-Based Systems, 29(01) (2021), 145-178. (SCI)
[4] C. H. Guo, S. M. Fang, Crank-Nicolson difference scheme for the derivative nonlinear Schr\"{o}dinger equation with the Riesz space fractional derivative, J. Appl. Anal. Comput., 11(3)( 2021),1074-1094. (SCI)
[5] C. H. Guo, S. M. Fang, Global existence and pointwise estimates of solutions for the generalized sixth-order Boussinesq equation, Commun. Math. Sci., 15(5) (2017), 1457-1487.(SCI)
[6] C. H. Guo, S. M. Fang, Planar, solitary, and spiral waves of the Burgers-CGL equations for flames governed by a sequential reaction, J. Math. Phys., 58(10) (2017) 101510. (SCI)
[7] C. H. Guo, S. M. Fang, B. L. Guo. Global smooth solutions of the generalized KS-CGL equations for flames governed by a sequential reaction, Commun. Math. Sci., 12(8) (2014), 1457-1474.(SCI)
[8] C. H. Guo, S. M. Fang, B. L. Guo. Long time behavior of solutions to coupled Burgers-complex Ginzburg-Landau (Burgers-CGL) equations for flames governed by sequential reaction, Appl. Math. Mech. Engl. Ed., 35(4) (2014), 515-534. (SCI)
[9] C. H. Guo, S. M. Fang, B. L. Guo. Limit behavior of the solutions for the GKS-CGL equations for flames governed by a sequential reaction. Sci. Sin. Math., 44(2014), 329-348.(中国科学A辑: 数学) (SCI)
[10] C. H. Guo, S. M. Fang, B. L. Guo. Long time behavior of the solutions for the dissipative modified Zakharov equations for plasmas with a quantum correction, J. Math. Anal. Appl., 403(1)(2013), 183-192. (SCI)
[11] J. L. Guan, S. M. Fang, X. Wang, C. H. Guo. Hopf bifurcations of traveling wave solutions for time-dependent Ginzburg–Landau equation for atomic Fermi gases near the BCS-BEC crossover. Commun. Nonlinear. Sci. Numer. Simulat., 18(1) (2013), 124-135. (SCI)
[12] C. H. Guo, S. M. Fang. Optimal decay rates of solutions for a multidimensional generalized Benjamin-Bona-Mahony equation, Nonlinear Anal., 75(7)(2012), 3385-3392. (SCI)
[13] S. M. Fang, C. H. Guo, B. L. Guo. Exact traveling wave solutions of modified Zakharov equations for plasmas with a quantum correction, Acta Math. Sci. (Engl. Ser.), 32B(3) (2012), 1073-1082. (SCI)
[14] C. H. Guo, S. M. Fang. Exact traveling wave solutions for two models of phase transitions driven by configurational forces, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 19(1) (2012), 81-94.
[15] C. H. Guo, X. D. Liu, S. M. Fang, Exact traveling wave solutions to a model for solid-solid phase transitions driven by configurational forces, Adv. Mater. Res., 418-420 (2012), 1694-1697. (EI)
[16] C. H. Guo, S. M. Fang, X. Wang. Exact traveling wave solutions of time-dependent Ginzburg-Landau theory for atomic Fermi gases near the BCS-BEC crossover, Commun. Comput. Info. Sci., 106(2) (2010), 111-118. (EI)